-
Ali, A. (1981). Bacillus thuringiensis serovar. israelensis (ABG-6108) against chironomids and some nontarget aquatic invertebrates. Journal of Invertebrate Pathology, 38(2), 264-272. doi:https://doi.org/10.1016/0022-2011(81)90132-4
-
Ali, A., Baggs, R. D., & Stewart, J. P. (1981). Susceptibility of Some Florida Chironomids and Mosquitoes to Various Formulations ofBacillus thuringiensis serovar. israelensis. Journal of Economic Entomology, 74, 672-677.
-
Ali, A., Lobinske, R. J., Leckel, R. J., Carandang, N., & Mazumdar, A. (2008). Population Survey and Control of Chironomidae (diptera) in Wetlands in Northeast Florida, USA. Florida Entomologist, 91(3), 446-452, 447. Retrieved from https://doi.org/10.1653/0015-4040(2008)91[446:PSACOC]2.0.CO;2
-
Ali, A., Nayar, J. K., & Xue, R. D. (1995). Comparative toxicity of selected larvicides and insect growth regulators to a Florida laboratory population of Aedes albopictus. Journal of the American Mosquito Control Association, 11(1), 72-76. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/7616194
-
Allgeier, S., Friedrich, A., & Brühl, C. A. (2019). Mosquito control based on Bacillus thuringiensis israelensis (Bti) interrupts artificial wetland food chains. Sci Total Environ, 686, 1173-1184. doi:10.1016/j.scitotenv.2019.05.358
-
Armitage, P. D., Pinder, L., & Cranston, P. (2012). The Chironomidae: biology and ecology of non-biting midges. Springer Science & Business Media.
-
Beck, M. L., Hopkins, W. A., & Jackson, B. P. (2013). Spatial and Temporal Variation in the Diet of Tree Swallows: Implications for Trace-Element Exposure After Habitat Remediation. Archives of Environmental Contamination and Toxicology, 65, 575-587.
-
Ben-Dov, E., Saxena, D., Wang, Q., Manasherob, R., Boussiba, S., & Zaritsky, A. (2003). Ingested particles reduce susceptibility of insect larvae to Bacillus thuringiensis. Journal of Applied Entomology, 127(3), 146-152. doi:https://doi.org/10.1046/j.1439-0418.2003.00732.x
-
Blank, D. (2023). Einfluss von Bacillus thuringiensis israelensis Toxinen auf verschiedene Arten der Chironomidae. (Master). Rheinisch-Westfälischen Technischen Hochschule Aachen, Aachen.
-
Cao, C. W., Sun, L. L., Wen, R. R., Li, X. P., Wu, H. Q., & Wang, Z. Y. (2012). Toxicity and affecting factors of Bacillus thuringiensis var. israelensis on Chironomus kiiensis larvae. J Insect Sci, 12, 1-8. doi:10.1673/031.012.12601
-
Car, M., & De Moor, F. (1984). The response of Vaal River drift and benthos to Simulium (Diptera: Nematocera) control using Bacillus thuringiensis var. israelensis (H-14). The Onderstepoort journal of veterinary research, 51, 155-160.
-
Charbonneau, C. S., Drobney, R. D., & Rabeni, C. F. (1994). Effects of Bacillus thuringiensis var. Israelensis on nontarget benthic organisms in a lentic habitat and factors affecting the efficacy of the larvicide. Environmental Toxicology and Chemistry, 13(2), 267-279. doi:https://doi.org/10.1002/etc.5620130211
-
Cheung, P. V. K., & Hammock, B. D. (1984). Toxin-specific immunoassays in field evaluation of BTI, Bacillus thuringiensis var. israelensis. Annual Report of Mosquito Control Research, 53-56.
-
Danks, H. V. (1971). Overwintering of some north temperate and arctic Chironomidae: II Chironomid biology. The Canadian Entomologist, 103(12), 1875-1910. doi:10.4039/Ent1031875-12
-
Dettinger-Klemm, P.-M. A. (2000). Temporäre Stillgewässer – Charakteristika, Ökologie und Bedeutung für den Naturschutz. In NUA-Seminarbericht: Gewässer ohne Wasser?. Ökologie, Bewertung, Management temporärer Gewässer: Nua.
-
Dettinger-Klemm, P.-M. A. (2003). Chironomids (Diptera, Nematocera) of Temporary Pools – an Ecological Case Study. Marburg/Lahn.
-
Dettinger-Klemm, P.-M. A. Bohle, H. W. (1996). Überlebensstrategien und Faunistik von Chironomiden (Chironomidae, Diptera) temporärer Tümpel. Limnologica, 28, 403 -421.
-
Engler-Fritz, S. (1984). Untersuchungen zur Wirksamkeit von B.t.i. – Präparaten gegen Stechmückenlarven. (Dissertation). Universität Heidelberg, Heidelberg.
-
Fillinger, U. (1999). Faunistische und ökotoxikologische Untersuchungen mit B.t.i. an Dipteren der nördlichen Oberrheinauen unter besonderer Berücksichtigung der Verbreitung und Phänologie einheimischer Zuckmückenarten (Chironomidae). Heidelberg, Univ., Diss., 1999,
-
Garcia, R., DesRochers, B., & Tozer, W. (1980). Further studies on Bacillus thuringiensis var. israelensis against mosquito larvae and other organisms. In: Mosquito Control Research Annual Report (ed., R.E. Fontaine), University. California, Davis, pp. 54-57.
-
Gerstle, V., Bollinger, E., Manfrin, A., Pietz, S., Kolbenschlag, S., Feckler, A., Entling, M. H., Brühl, C. A. (2024). Trophic effects of Bti-based mosquito control on two top predators in floodplain pond mesocosms. Environmental Science and Pollution Research, 31(33), 45485-45494. doi:10.1007/s11356-024-34124-w
-
Gerstle, V., Manfrin, A., Kolbenschlag, S., Gerken, M., Islam, A. S. M. M. U., Entling, M. H., Bundschuh, M., Brühl, C. A. (2023). Benthic macroinvertebrate community shifts based on Bti-induced chironomid reduction also decrease Odonata emergence. Environmental Pollution, 316, 120488. doi:https://doi.org/10.1016/j.envpol.2022.120488
-
Griego, V. M., & Spence, K. D. (1978). Inactivation of Bacillus thuringiensis spores by ultraviolet and visible light. Appl Environ Microbiol, 35(5), 906-910. doi:10.1128/aem.35.5.906-910.1978
-
Ignoffo, C. M., Garcia, C., Kroha, M., & Couch, T. L. (1983). The Effects of Temperature and Water on the Insecticidal Activity and Spore Viability of a Wettable Powder Foundation of Bacillus thuringiensis var. israelensis. Journal of the Kansas Entomological Society, 56(1), 88-92. Retrieved from http://www.jstor.org/stable/25084377
-
Kästel, A., Allgeier, S., & Brühl, C. A. (2017). Decreasing Bacillus thuringiensis israelensis sensitivity of Chironomus riparius larvae with age indicates potential environmental risk for mosquito control. Sci Rep, 7(1), 13565. doi:10.1038/s41598-017-14019-2
-
Kolbenschlag, S., Bollinger, E., Gerstle, V., Brühl, C. A., Entling, M. H., Schulz, R., & Bundschuh, M. (2023). Impact across ecosystem boundaries – Does Bti application change quality and composition of the diet of riparian spiders? Science of The Total Environment, 873, 162351. doi:https://doi.org/10.1016/j.scitotenv.2023.162351
-
Lacey, L. (2007). Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control. Journal of the American Mosquito Control Association, 23, 133-163. doi:10.2987/8756-971X(2007)23[133:BTSIAB]2.0.CO;2
-
Lagadic, L., Roucaute, M., & Caquet, T. (2014). Bti sprays do not adversely affect non‐target aquatic invertebrates in French Atlantic coastal wetlands. Journal of Applied Ecology, 51, 102-113.
-
Lagadic, L., Schäfer, R. B., Roucaute, M., Szöcs, E., Chouin, S., de Maupeou, J., Duchet, C., Franquet, E., Le Hunsec, B., Bertrand, C., Fayolle, S., Francés, S., Rozier, Y., Foussadier, R., Santoni, J.-B., Lagneau, C. (2016). No association between the use of Bti for mosquito control and the dynamics of non-target aquatic invertebrates in French coastal and continental wetlands. Sci Total Environ, 553, 486-494. doi:10.1016/j.scitotenv.2016.02.096
-
Lei, P., Zhao, W. M., Yang, S. Y., Zhang, J. S., & Liu, L. J. (2005). Impact of environmental factors on the toxicity of Bacillus thuringiensis var. israelensis IPS82 to Chironomus kiiensis. Journal of the American Mosquito Control Association, 21(1), 59-63. doi:10.2987/8756-971x(2005)21[59:Ioefot]2.0.Co;2
-
Lellák, J. (1968). Positive Phototaxis der Chironomiden-Larvulae als regulierender Faktor ihrer Verteilung in stehenden Gewässern. Annales Zoologici Fennici, 5(1), 84-87. Retrieved from http://www.jstor.org/stable/23731448
-
Mackey, A. P. (1977). Growth and development of larval Chironomidae. Oikos, 28, 5.
-
Mackey, A. P. (1979). Trophic dependencies of some larval chironomidae (Diptera) and fish species in the River Thames. Hydrobiologia, 62(3), 241-247. doi:10.1007/BF00043541
-
Moller Pillot, H. K. M. (2014). Chironomidae Larvae, Vol. 3: Orthocladiinae: Biology and Ecology of the Aquatic Orthocladiinae (Chironomidae Larvae: Biology and Ecology of the aquatic Orthocladiinae). KNNV PUB; 1. Edition
-
Morawcski, J. (1983). Untersuchungen zur Wirkung von Bacillus thuringiensis var. israelensis auf aquatische Nontarget-Organismen. Universität Heidelberg.
-
Mullen, G. R., & Hinkle, N. C. (1988). Method for determining settling rates of Bacillus thuringiensis serotype H-14 formulations. Journal of the American Mosquito Control Association, 4(2), 132-137.
-
Myasnik, M., Manasherob, R., Ben-Dov, E., Zaritsky, A., Margalith, Y., & Barak, Z. E. (2001). Comparative Sensitivity to UV-B Radiation of Two Bacillus thuringiensis Subspecies and Other Bacillus sp. Current Microbiology, 43(2), 140-143. doi:10.1007/s002840010276
-
Neugebauer, M. (1993). Ökotoxikologische Untersuchungen zur Anwendung von mikrobiologischen Präparaten im Rahmen der Stechmückenbekämpfung. (Diplom). Heidelberg, Speyer.
-
Ohana, B., Margalit, J., & Barak, Z. (1987). Fate of Bacillus thuringiensis subsp. israelensis under Simulated Field Conditions. Appl Environ Microbiol, 53(4), 828-831. doi:10.1128/aem.53.4.828-831.1987
-
Platzer-Schultz, I. (1974). Unsere Zuckmücken. Lutherstadt
-
Pluskota, B., Augsten, X., Jöst, A., Kizgin, A., Kühnlenz, T., Stelzner, L., Rodriguez, A. T., Becker, N. (2018). Untersuchungen zur Effektivität von Monitoring- und Bekämpfungsmaßnahmen für die Entwicklung eines Maßnahmenkatalogs zur integrierten Bekämpfung der Asiatischen Tigermücke in Baden-Württemberg. (4500489832/23).
-
Pont, D., Franquet, E., & Tourenq, J. N. (1999). Impact of Different Bacillus thuringiensis Variety israelensis Treatments on a Chironomid (Diptera Chironomidae) Community in a Temporary Marsh. Journal of Economic Entomology, 92(2), 266-272. doi:10.1093/jee/92.2.266
-
Rodcharoen, J., Mulla, M. S., & Chaney, J. D. (1991). Microbial larvicides for the control of nuisance aquatic midges (Diptera: Chironomidae) inhabiting mesocosms and man-made lakes in California. Journal of the American Mosquito Control Association, 7(1), 56-62.
-
Smits, J. E. G., Bortolotti, G. R., Sebastian, M., & Ciborowski, J. J. H. (2005). Spatial, temporal, and dietary determinants of organic contaminants in nestling tree swallows in Point Pelee National Park, Ontario, Canada. Environmental Toxicology and Chemistry, 24(12), 3159-3165. doi:https://doi.org/10.1897/04-045R.1
-
Stevens, M. M., Akhurst, R. J., Clifton, M. A., & Hughes, P. A. (2004). Factors affecting the toxicity of Bacillus thuringiensis var. israelensis and Bacillus sphaericus to fourth instar larvae of Chironomus tepperi (Diptera: Chironomidae). J Invertebr Pathol, 86(3), 104-110. doi:10.1016/j.jip.2004.04.002
-
Vallenduuk, H. J. (2019). Chironomini larvae of western European lowlands (Diptera: Chironomidae). Keys with notes to the species. Lauterbornia, 82
-
Vallenduuk, H. J., & Moller Pillot, H. K. M. (2013). Chironomidae Larvae: General ecology and Tanypodinae (2 ed.). Zeist: KNNV Publishing.
-
Vaßholz, C. (2024). Auswirkungen von Bacillus thuringensis israelensis auf die die Dipterenzönose im Auwald mit einem Schwerpunkt auf der Familie der Chironomidae. (PhD). Universität Heidelberg, Heidelberg.
-
Wolfram, G., Wenzl, P., & Jerrentrup, H. (2018). A multi-year study following BACI design reveals no short-term impact of Bti on chironomids (Diptera) in a floodplain in Eastern Austria. Environ Monit Assess, 190(12), 709. doi:10.1007/s10661-018-7084-6
-
Wraight, S., Molloy, D., & McCoy, P. (1982). A Comparison of Laboratory and Field Tests of Bacillus Sphaericus Strain 1593 and Bacillus Thuringiensis Var.Israelensis Against Aedes Stimulans Larvae (Diptera: Culicidae). The Canadian Entomologist, 114, 55-61. doi:10.4039/Ent11455-1
-
Yiallouros, M., Storch, V., & Becker, N. (1999). Impact of Bacillus thuringiensis var. israelensis on Larvae of Chironomus thummi thummi and Psectrocladius psilopterus (Diptera: Chironomidae). Journal of Invertebrate Pathology, 74(1), 39-47. doi:https://doi.org/10.1006/jipa.1999.4852
-
Zgomba, M. u. P., D. (1991). Larval instar sensitivity to B.t.i. under different temperature and population density conditions. Bericht. Speyer.